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Abstract. In this paper, we consider the class of linearly constrained nonconvex quadratic pro- 
gramming problems, and present a new approach based on a novel Reformulation-Linearization/ 
Convexification Technique. In this approach, a tight linear (or convex) programming relaxation, or 
outer-approximation to the convex envelope of the objective function over the constrained region, 
is constructed for the problem by generating new constraints through the process of employing suit- 
able products of constraints and using variable redefinitions. Various such relaxations are considered 
and analyzed, including ones that retain some useful nonlinear relationships. Efficient solution tech- 
niques are then explored for solving these relaxations in order to derive lower and upper bounds on 
the problem, and appropriate branching/partitioning strategies are used in concert with these bound- 
ing techniques to derive a convergent algorithm. Computational results are presented on a set of 
test problems from the literature to demonstrate the efficiency of the approach. (One of these test 
problems had not previously been solved to optimality.) It is shown that for many problems, the initial 
relaxation itself produces an optimal solution. 
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1. Introduction 

This paper deals with finding a global optimal solution for nonconvex quadratic 

programming problems of  the form 

QP : Minimize cx + x t Q x  

subject to A x  <<, b 

0~<l~ ~ < x ~ < u k  <cxz k =  1 , . . . , n ,  

where c E R ~, A is an m x n matrix, b E R ~ ,  Q is an n x n indefinite matrix, 
assumed to be symmetric for convenience, and where the decision variables are 
x E ~ .  Our proposed methodology is equally applicable to the case where Q 

is a negative semidefinite matrix; however, for this pure concave case, we do not 
take advantage of  the extremality property of  the global optimum, and treat it just 
as another non-convex instance of  the problem. Notice that we have assumed the 
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existence of finite lower and upper bounds on all the variables. These might be 
prespecified bounds, or they might be derived from the other constraints of QP 
and imposed herein for certain algorithmic purposes. As we proceed, we will point 
out modifications to be made in our algorithmic constructs whenever such bounds 
are known to be implied by the other constraints defining the problem, but are not 
explicitly specified. 

Pardalos and Vavasis (1991) have shown that quadratic programs are NP-hard, 
even when Q has just one negative eigenvalue. These problems, which arise vari- 
ously in applications such as in modelling economies of scale in a cost structure, 
in location-allocation problems, VLSI design problems, some production planning 
and risk management problems, and in various other mathematical models such 
as the maximum clique problem and the jointly constrained bilinear programming 
problem, have therefore been both interesting and challenging problems to solve 
(see the surveys of Pardalos and Rosen (1987) and Pardalos (1991)). Earlier work 
in pursuit of solving general quadratic programming problems includes that of Rit- 
ter (1966), who gave an algorithm based on Tuy-cuts for concave programming, 
Manas (1968), who gave an algorithm based on the enumeration of vertices of the 
feasible region, and Mueller (1970), who used gradient projection searches in an 
adjacent extreme point framework. Zwart (1973) has subsequently shown via a 
counter example that Ritter's algorithm may converge to a non-global optimum. 
Balas (1975) introduced generalized polar sets, and Benacer and Pham Dinh Tao 
(1986) used reverse convex constraints in a cutting plane framework to find the 
minimum Karush-Kuhn-Tucker point. Considering QP in its transformed polar 
form, Kough (1979) used a generalized Bender's approach, while Tuy (1987) spe- 
cialized a cutting plane procedure that was developed to solve DC-programming 
problems. Bomze (1992) presented sufficient optimality conditions based on e- 
subdifferential calculus. Pardalos, Glick and Rosen (1987), and Phillips and Rosen 
(1990) employed eigen-transformations to construct a lower bounding problem 
using the convex envelope of the concave terms over the bounding constraints, and 
have developed algorithms based on partitioning the bounding intervals. Using a 
similar lower bounding problem, Vavasis (1992) has proposed an e-optimum algo- 
rithm that is polynomial in 1/e for a fixed number of concave variables. For mixed 
integer quadratic programs, A1-Khayyal and Larsson (1990) developed two forms 
of piecewise affine convex underestimating functions for linearizing the objec- 
tive function in a branch-and-bound context. Floudas and Visweswaran (1990, 
1993) proposed an e-finite branch-and-bound algorithm employing a generalized 
Benders type of approach, where Benders' cuts are replaced by suitable implied 
Lagrange functions. Specializing this algorithm for solving certain classes of prob- 
lems, including indefinite and concave programming problems, Visweswaran and 
Floudas (1993) have presented computational results on solving randomly gener- 
ated indefinite QP's having up to 25 nonlinear variables and 100 linear variables, 
and a separable objective function. 
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For the equivalent, jointly constrained bilinear programming problem, Muu 
and Oettli (1991) have proposed a branch-and-bound algorithm using simplex 
bisection bisections and a decomposition based bounding problem. This approach 
can also handle convex constraints. A1-Khayyal and Falk (1983) have developed 
a branch-and-bound algorithm using the convex envelope of each bilinear term to 
generate bounding problems. These bounds were significantly improved by Sherali 
and Alameddine (1992) who designed a Reformulation-Linearization Technique 
(RLT) to obtain tight lower bounding linear programs. Later, Sherali and Tuncbilek 
(1992) generalized this algorithm to solve the class of polynomial programming 
problems. 

In this paper, we investigate various specialized RLT designs for generating both 
linear (RLT-LP) and convex, nonlinear (RLT-NLP) lower bounding problems for 
QP, that can be suitably embedded within a branch-and-bound procedure. In gener- 
al, we call this process of generating relaxations a Reformulation-Convexification 
approach. The first scheme we propose involves the generation of quadratic con- 
straints through a construction of pairwise constraint products. These constraints 
are subsequently linearized to yield a lower bounding linear program. We show 
that the resulting linear program that involves all such products is invariant under 
affine transformations. However, if eigen-transformation is used as a particular 
linear transformation, this enables us to introduce additional nonlinear convex 
constraints that can further strengthen the linear programming relaxation produced 
by RLT. Such nonlinear constraints can be suitably handled within a Lagrangian 
dual procedure, without hampering the efficiency of the solution procedure as 
compared with that for solving the linear programming bounding problem. We 
also present a rule for reducing the number of new second-order constraints gener- 
ated for the bounding problem, without compromising much on the quality of the 
resulting lower bound. 

Following this development, the paper discusses implementation issues and 
strategies for a hybrid best-first and depth-first branch-and-bound algorithm for 
solving QP. Branching is performed based on the partitioning of the box constraints 
defined by the bounds on each variable. Lower and upper bounds on QP are then 
derived using the designed RLT relaxations. Several other algorithmic strategies 
are gainfully employed in solving the problem. In particular, the Lagrangian dual 
formulation is enhanced using a layering strategy, and various simple strategies 
are devised for range-restricting variables as well as to tighten the lower bounds 
in order to enhance the fathoming efficiency of the algorithm. Guidelines for other 
implementation details, along with computational experience on test problems from 
the literature, are also provided. In particular, for one of the test problems having 
20 variables and 10 constraints, our procedure finds an improved solution (within 
0.1% of optimality) than has been previously reported in the literature. 
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2. Reformulation via Quadratic Constraint Generation (RLT-LP) 

In this section, we generate quadratic implied constraints, and subsequently lin- 
earize them to obtain RLT constraints. To generate the quadratic constraints, 
we consider pairwise products of so-called bound-factors and constraint-factors 
defined by individual variable bounds and structural constraints in QP. For brevi- 
ty of presentation, let us combine bound and constraint-factors in a single set as 
follows: 

( u k - - X k ) ) O ,  k = l , . . . , n  -- i = l , . . . , m + 2 n J  (1) 
( x ~ - I k ) ) 0 ,  k - - 1 , . . . , n  

where aix <~ bi is the ith (structural) constraint from Ax <. b, for i = 1 , . . . ,  m. At 
the reformulation step, we take all possible pairwise products of the factors in (1), 
including self-products, to generate the following nonlinear implied constraints 
that are included in the original problem QP: 

( g i - G ~ x ) ( g j - G j x ) ) O  V1 ~ < i < ~ j ~ < m + 2 n .  (2) 

We then linearize the resulting augmented problem by substituting 

w k l = x k x l  Vl~<k~< l~<n .  (3) 

This substitution associates a separate new variable with each distinct nonlinear 
term in the problem. We often refer to these variables as RLT variables. The 
resulting problem is called thefirst-level orfirst-order RLT, since it employs first- 
order (linear) factors to generate new constraints. Denoting [(g~ - Gix)(gj - 
Gjx)]e <. O, V1 ~< i <_ j ~< m + 2n as the resulting linearized constraints, 
we obtain the following lower bounding first-level RLT linear program, where 
q m ( :  qlk) is the (k, l) th element of the symmetric matrix Q. 

n n n--1 n 

R L T -  L P "  Minimize ~ ckx~ + ~ qkkwkk + 2 ~ ~ qklw~l (4:1) 
&=l k = l  k = l / = k + l  

subject to [ (g , -  a x)(gj - Vjx)]e 0 

V1 ~ < i ~ < j ~ < m + 2 n .  (4.2) 

Notice that the original constraints of QP are not included in RLT-LP, since, as 
we shall show in Proposition 1 later, these constraints are implied by the RLT 
constraints (4.2), even if the feasible region is not assumed to be bounded, provided 
that at least one variable has a bounded range over the feasible region. 

For any feasible solution to problem QP, there exists a feasible solution to RLT- 
LP having the same objective function value through the definitions (3). However, 
the converse is not necessarily true. Therefore, RLT-LP is a relaxation of QP that 
yields a lower bound on the global minimum of QP. Moreover, if (~, ~)  solves 
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RLT-LR then since ~ is feasible to QP, it provides an upper bound on this problem. 
In particular, if this solution also satisfies the definitions (3) for all the nonlinear 
terms appearing in QP, then ~ solves QR 

REMARK 1. (Equality Constraints): If there is some equality constraint G~x = 9~ 
in QP, then we only need to consider the product of the constraint-factor (9~ - 
G~x) = 0 with each variable xk, k = 1 , . . . ,  n, since all the other RLT constraints 
generated via this constraint can be obtained by suitably surrogating the constraints 
[x~(ge - aex)]e = O , k  = 1 , . . . , n .  

3. An Illustrative Example 

To provide some insights into the RLT process and its effects, consider the following 
illustrative concave quadratic program: 

Minimize {z = - (Xl  - 12) 2 - x22 �9 - 6 x l  + 8x2 ~< 48, 

3Xl + 8x2 ~< 120, 0 ~< Xl ~< 24, X2 ~ 0 } .  

The optimal solution to this problem is (x~, x~) = (24, 6), or alternatively, (0, 6), 
and the optimal objective function value is z* = - 180. The feasible region happens 
to be bounded, and given by the convex hull of the vertices (0, 0), (0, 6), (8, 12), (24, 
6), and (24, 0). Before generating the first-level RLT for this problem, let us identify 
the bound-factors as ( 2 4 -  Xl) /> 0, Xl /> 0, x2 /> 0, and denote the constraint- 
factors as 81 = (48 + 6 X l  - -  8 x 2 )  /> 0 ,  and 8 2 = (120 - 3Xl  - 8 x 2 )  ) 0 .  The first- 
level RLT problem is then generated by constructing the 15 pairwise (including 
self-products) of these factors, and then linearizing the resulting quadratically 
constrained QP via the variable redefinitions wll = x 2, w12 = XlX2, and w22 = 
z 2" 

The solution to this first-level RLT problem is given by (5 l, 52, Wll, w 12, w22) = 
(8, 6, 192, 48, 72) and has an objective function value of -216.  Hence, -216  
provides a lower bound on QP. Notice that XlX2 = N12; however, the same is 
not true for Wll : 192 r 52 = 64, and w22 : 72 r 52 = 36. Notice also that 

= (8, 6) is feasible to QP and has an objective function value of -52.  This 
provides an upper bound on QP. 

Now, let us partition the problem via the dichotomy x l ~< 8 or x l /> 8. When 
we solve a first-level RLT problem separately for each partitioned subproblem, the 
optimal value turns out to be -180  in both cases. That is, the original problem is 
solved after a single branching on X l. 

To show what RLT is trying to achieve, let us introduce cubic RLT constraints. In 
the following problem, we consider certain selected second-order RLT constraints 
along with some cubic bound/constraint-factor products to yield additional RLT 
constraints. (This selection is done for the purpose of illustration, and is motivated 
by the magnitude of the optimal dual variable values of the first-level RLT problem.) 
The resulting linear program given below is a (partial) second-level RLT problem, 
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where the additional RLT variables represent the cubic terms W l l l =  X 3, Wl12 ~-- 

x2x2, and W12 2 ~- Xl x2 .  

Minimize 

subject to 

- - W l l  - -  W22 -4- 24Xl - 144  

[ ( 2 4 -  Xl)Sl]e = 1152 + 96Xl - 192x2 - 6 w a l  + 8w12 >/0 

[XlS2]g = 4 8 X l  -4- 6 W l l  - -  8w12 /> 0 

[(24 - X l ) X l ]  e = 24xt - Wl l  ) 0 

[(24 - Xl)XlSl]e = 1152Xl -4- 96Wll - 192wle - 6w111 

+ 8 W l l  2 ) 0 

[(24 - xl)x2sl]e = 1152x2 + 96w12 - 192w22 - 6w112 

+ 8 W 1 2 2  /> 0 

[(24 - xl)xlsz]e = 2880x1 - 192Wll -- 192w12 -4- 3Wlll 

+ 8 W l l  2 ) 0 

[XlX282]g = 120W12 - -  3W112 - -  8W122 ) 0.  

The solution to this revised problem is given by (~?a, ~2) = (0, 6), Z~22 ---- 36, toll = 
Z~;12 --~ ~/3111 = Z~112 = "t0122 --~ 0,  having the objective function value - 180. Hence, 
the above linear bounding problem composed of  selected second and third-order 
RLT constraints solves the original problem. In fact, we can demonstrate in this 
instance that these constraints effectivelY describe the convex envelope of  the 
objective function for the original concave quadratic program. 

To see this, let us define a particular surrogate of  the above third-order RLT 
constraint as follows. 

surr[cubic]e - 1/512[(24 - xl)xls l]e  -4- 1/192[(24 -- xl)x2sl]e 

.4.1/256[(24 - Xl)X182]g -4- 1/192[XlX2S2]e >>. O. 

When we further surrogate this constraint with the objective function, and the 
second-order RLT constraints using two different sets of weights in turn, we obtain 
the following two constraints that yield the desired convex envelope representa- 
tion. 

(Z -4- Wll -4- W22 - -  24ml + 144 = 0) + 7/16[(24 - z l )z l ]e  >/0) 

+(surr[cubic]e >>. O) ~ z >>. - 6 z 2  - 144, 

(Z -4- W l l  -4- W22 - -  24Xl + 144 = O) -4- 7/144([(24 - xl)sl]e >1 O) 
+7/144([XlSz]e >1 O) -4- (surr[cubic]e ) O) ~ z >>. (10/3)x2 - 200. 

Hence, it turned out that the given QP was solved as the above single linear 
program. In fact, as this example exhibits, the RLT scheme attempts to approximate 
the convex envelope of  the objective function over the feasible region in deriving 
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a lower bounding linear program. If this approximation is composed properly, a 
tight linear representation of the problem can be derived. 

4. Insights into the First-Level RLT Application 

In this section, we present some results that provide insights into the first-level 
RLT problem. Some implications of these results will find direct use in designing 
a suitable branch-and-bound algorithm. In concert with definition (1), we refer to 
the constraint set of QP, including the simple bound restrictions on the variables, 
as Gx <. g. 

The first result below shows that the original constraints Gx <. g need not 
be included in the first-level RLT problem, even under a relaxed boundedness 
assumption on QP. 

PROPOSITION 1. Suppose that the feasible region o f  QP is not necessarily 
bounded (possibly including unrestricted variables) but that for  some variable 
k e { 1 , . . . , n } ,  we have 

Uk = max{xk �9 Gix ~< g4,i = 1 , . . . , m  + 2n} < ec (5.1) 

Lk = min{xk " - G i x  >>. -g4 , i  = 1 , . . . , m  + 2n} > - o o  (5.2) 

where Uk > Lk. Then, the original constraints Gx <. g are implied by the RLT 
constraints [(g4 - a4x)(gj  - ajx)]~/> 0 V1 < i < j <, m + 2n. 

Proof. Let p~ /> 0 and/f l  ) 0 be the optimal dual multiplier vectors associ- 
ated with the constraints in (5.1) and (5.2), respectively. Then, we have G t #  u = 

- G t #  ~ = ek, where ek E R n is the unit vector with entry 1 at the k th position, and 
also, gtl_tU = Uk, and _gt#g : Lk. 

Now, for any j E { 1 , . . . ,  m + 2n}, consider the surrogate of all RLT constraints 
involving the constraint-factor (g j  -- G j x  >/ 0 ) ,  obtained by using the weights 
# u .  

m+2n 

0 .< ~ #~[(94 - a4~)(gj  - aj~)]~ 
4=1 

m+2n 

= Z , ~ ( 9 4 g j  - 94Gjx - gja4~ + [(a4x)(ajx)]~) 
4----1 

mW2n m+2n m+2n 

4----1 4----1 4----1 
t t t 

= - g j x k  + (gj - a~x)U~ + %[xx  ]~aj. 

After rearranging the terms in the final expression, and noting that e kt [xxt]gGjt = 

[x~(Gjx)]e, we obtain, 

Uk(gj - Gjx)  - [xk(gj - Gjx)]z = [(Uk - x~)(gj - Gjx)]e >. O. (6.1) 
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Replacing #~ by #e, and then following the same steps as above, we obtain, 

- L ~ ( g j  - G jx )  + [xk(gj - Gjx)]g = [(xk - L~)(gj - Gjx)]e >>. O. (6.2) 

The surrogate of (6.1) and (6.2) gives (Uk - Lk)(gj  - Gjx )  >> O, which implies 
that G j x  <~ 9j, since Uk > Lk. Since this is tree for any j C ( 1 , . . . ,  m + 2n}, 
including the bounding constraints, the proof is complete. �9 

Consider the constraints Gx <<. 9, and suppose that some of these constraints 
are implied by the others. In particular, let us assume that the constraints G~x <<. 
9i, / E { 1 , . . . ,  m'} imply the other constraints within Gx <<. g, and represent, say a 
minimal set of non-implied constraints. The second proposition below exhibits that 
we do not need to use any implied constraint in generating RLT constraints, because 
such constraints would be implied by the RLT constraints that are generated via 
the products of the non-implied constraints. Hence, any constraints within Gx <<. 9 
that are known to be implied can be discarded without loss of any tightness in the 
resulting RLT problem, and moreover, it is futile to use any implied constraint, 
such as implied bounds on variables, to generate additional RLT constraints. The 
following result encapsulates the foregoing comment. For convenience, let us refer 
to the RLT constraints generated via the non-implied set of original constraints 
a s  

F - = { [ ( g i - G i x ) ( g j - G j x ) ] e > / O  Vl <. i <~ j <~ m'} .  (7) 

PROPOSITION 2. Suppose that the assumption o f  Proposition 1 holds, and let 
c~x <~ /3 be implied by the constraints Gix  <<. 9~, i = 1 , . . . ,  m I. Then, the RLT 
constraints [(/3 - c~x)(gi - G~x)]e >>. O,i = 1 , . . . , m ' ,  and [ ( /3-  c~x)2]~ /> 0 are 
also implied by the RLT constraints [(9i - Gix)(9j  - G j x ) ] ~  >~ O, 1 <~ i <~ j <<. m'. 
In particular, the constraints o f  the first-level RLT problem are all implied by the 
RLT constraints contained within F. 

Proof  Since/3 /> maximum{~x : Gix <<. gi, i = 1 , . . . ,  m'},  there exist dual 
multipliers #~/> 0, i = 1 , . . . ,  m '  such that 

m ! m ! 

Z = and </3. (s) 
i=1  i=1  

Now, for any j E {1 , . . . ,  m~}, consider the surrogate of the following RLT con- 
straints from F involving the constraint-factor (gj - Gjx )  >1 O, obtained by using 
the weights #. 

m ! 

0 Z G x)(gj - Gjx)], 
i-----1 

?Tb t 

= ~~.#i(gigj  - g iGjx  - g jGix  + [(Gix)(Gjx)]e) 
i = l  
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m t m I rn  t 

= -g5 E, C x + (gj - Cjx)  + E " 
i = l  i----1 i----1 

Since by Proposition l, (gj - Gjx) >1 0 is implied by F, we get upon using (8) 
that 

0 < -gj x + Z (g j  - a j z )  + = [(Z -  x)(gj - a j x ) ] e .  

Hence, [(/3 - ax)(gj  - Gjx)]e >>, 0 is implied by F for all j = 1 , . . . , m ' .  Fur- 
thermore, by following the same algebraic steps as above, and using the foregoing 

m ! assertion, we get 0 ~< ~ j = l  # J [ ( g J  - -  G j x ) ( f l  - o!x) ]g  ~< [(/3 - c t x ) ( / 3  - c t x ) ] e .  

Hence, the self-product constraint [(/3 - o~x)2]e >/0 is also implied by F. The final 
assertion of the proposition now follows by inductively taking the implied con- 
straints of Gx <~ g one at a time, and establishing as above that the RLT constraints 
generated via this constraint, including the self-product constraint, are implied by 
the RLT constraints generated via the other remaining constraints. Discarding such 
implied constraints sequentially, we deduce that the constraint set F implies the 
other RLT constraints, and this completes the proof. �9 

Knowing that the original constraints are implied by the RLT constraints, if an 
original constraint from Gx <<. g is binding at some feasible solution (7, ~ )  to 
RLT-LP, then one would expect that some of the RLT constraints would also be 
binding at (5, ~-). The next result shows that the RLT constraints generated using 
a constraint-factor that turns out to be binding, are themselves binding. However, 
for this result, we need the original assumption that the feasible region of QP is 
bounded. 

PROPOSITION 3. Assume that the feasible region of  QP is bounded, and suppose 
that at a given point (5, ~),  we have Gi~ = gi, for some i E {1 , . . . ,  m + 2n}. 
Then, the linearized product of  this constraint with any original variable xk, k E 
{ 1 , . . . ,  n} at (7, ~)  is zero. That is, denoting [.]e evaluated at (-~, ~)  by [']gl(~,u 
we have, 

k 

[xk(gi - Gix)]el(5,~) ~ gi-2k - E Gizwlk 
i=1  

n 

- ~ G i l ~ k l = 0 ,  V k =  1 , . . . , n .  (9) 
/ = k + l  

In particular, the RLT constraint generated by multiplying this constraint with any 
other constraint is also binding. 

Proof. Under the boundedness assumption of the feasible region, consider the 
constraints (6.1) and (6.2), which are implied by or which already exist in F by 
Proposition 2, in a combined form as follows: 

Lk(9i - Gix) <~ [xk(gi - Gik)]t <~ Uk(gi - Gix) Yk = 1 , . . . ,  n. (10) 
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Evaluating (10) at (g, ~) ,  since gi - Gig = 0, we obtain (9) holding tree. For any 
j E { 1 , . . . ,  m + 2n}, when we evaluate the following RLT constraint at (g, N), 

[(g~ - a~)(gj - aj~)]~ = gj(g~ - a~) 

n 

- ~ Gjk[~(g~ - G~x)]~ >~ 0 (11) 
k=l 

we get by (9) and (gi - Gig) = 0, that (11) holds as equality. This completes the 
proof. �9 

Next, we address the question whether an application of RLT after using some 
affine transformation can possibly produce a different relaxation. This might be 
of interest, in particular, if one wished to investigate the effect of applying RLT 
to different nonbasic space representations of the linear constraint defining QR or 
the effect of employing an eigen-transformation on QP before applying RLT. More 
specifically, given the quadratic programming problem QP: minimize{cx + x tQx  : 
Gx <~ g} < oo, define a nonsingular affine transformation s = B x  + p  to represent 
QP in s-space as follows, using the substitution x - B - i s  - B - l p ,  and where 
B - t  = ( B - l )  t. 

QP' : - c B - l p  + p t B - t Q B - l p +  Minimize (cB -1 - 2 p t B - t Q B - l ) s  

+ s t B - t Q B - l s  

subject to G B -  1 s <~ g + G B -  lp 

Let RLT-LP and RLT-LP' be the linear programs obtained by applying the first- 
level RLT to QP and QP', respectively, using all possible pairwise constraint-factor 
products. These problems can be stated as follows, where Gi is the ith row of G, 
for i E { 1 , . . . , m  + 2n}. 

RLT-LP: 

Minimize cx + [xtQx]e 

subject to gigj - (giGj + gjGi)x  + [(Gix)(Gjx)]e >/0 

V(i , j )  E MR = {( i , j )  : 1 ~< i ~<j ~< m + 2 n }  

RLT-LP' : 
- c B - l p  + p t B - t Q B - l p  

+Minimize (cB -1 - 2 p t B - t Q B  -1)s + [ s t B - t Q B - 1  s]g 

subject to (9~ + G~BlP)(gj  + GjB-IP) - [(9~ + G~B ~p)(GjB -~) 
+ (gj + GjB- lp) (G~B1)]s  + [(G~B ls)(%B-18)]~ >~ 0 

V(i , j )  C MR 
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Also, in accordance with our foregoing discussion, let us define the RLT variables 
for each quadratic term as w~t = [xkxl]e and Ykt = [sksl]e, 1 <. k <<. l <<. n. 
Henceforth, we will let v[.] denote the value at optimality of the corresponding 
problem [.]. The next proposition shows that the first-level RLT is invariant under 
affine transformations. 

PROPOSITION 4. v[RLT-LP] = v[RLT-LP']. In particular, if(x*, w* ) solves RLT- 
LP, and if u* is the corresponding optimal dual solution, then 

(**, [u*]) - (s*, [W]H) 
= (Bx* + p,B[xxt]*eB t + p (x* ) tB  t + Bx*p t -'}- p p t )  (12) 

solves RLT-LP', with the corresponding optimal dual solution being u*, where [y*] 
0 * denotes an n • n matrix representation ~f y , such that for 1 <<. k <<. I <~ n, [Y*]kl = 

[Y*]Zk = Y~l, and where [']kl is the (k, l) th entry of the n • n symmetric matrix [.]. 
Proof From the KKT conditions of the linear program RLT-LP, we have 

and 

- e -  ~ ui*j(gjGi + giGj) = 0  (13.1) 

- 2 Q  + ~ * t G~Gj) O. (13.2) uij (Gj Gi + = 
(i,j)GMR 

(Note that in the dual feasibility conditions (13.2), there are n(n - 1)/2 more 
equations than the number of w-variables, but since the left-hand side is symmetric, 
(13.2) is valid, having n (n - l ) / 2  duplicated equations.) Dual feasibility of u* for 
RLT-LP I then follows directly from (13. l) and (13.2), since we have, 

0 = (13.1)B -1 +ptB- t (13 .2 )B -1  

= _ c B - 1  + 2 p t B - t Q B  -1 _ ~ ui*j[(gi + G i B - l p ) ( G j B  - l )  

+(gj + G j B - l p ) ( G i B - I ) ]  (14.1) 

and 

0 = B- t (13 .2 )B  - l  = - 2 B - t Q B  -1 

+ ~ ui*jB-t(GJ.Gi + G~Gj)B -1. (14.2) 
(i,j)CMR 

For verifying the primal feasibility and complementary slackness conditions with 
respect to (12), define 

s*=Bx*+p,  so that x * = B  - l ( s* -p)  (15.1) 
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and 

[y,] = B [ w , ] B  t + p ( x , ) t B t  + B x , p t  + p p t  

= B[w*]B t - (pv t - p ( s * )  t - s*pt), (15.2) 

where [w*] is the matrix representation of w*, defined similarly as [y*]. Then, 
consider any constraint of RLT-LP ~ evaluated at (s*, y*). Recognizing that ss t in 
this constraint is replaced by [y], we have, using (15.1) and (15.2), 

(g~ + G ~ B - l p ) ( g j  + G j B - l p )  - [(g~ + G i B - l p ) ( G j B  - l )  

+(gj  + G j B - I p ) ( G ~ B - 1 ) ] s  * + C i B - l [ y * ] B - t G ~  

= g~gj - (gjG~ + y ~ G j ) B - l ( s  * - p) 
--I * +G~B ([y ] + pp~ - p(s*) ~ - s*d)B-~G~ 

= g~gj - (gjG~ + g iGj )x*  + G~[w*]G} >1 0 

since (x*, w*) is primal feasible for RLT-LP. Moreover, this also exhibits that 
the slack values of constraints in RLT-LP and RLT-LP ~ are the same when they 
are evaluated at (x*, w*) and (s*, y*), respectively. Hence the complementary 
slackness conditions for RLT-LP ~ follow directly from the KKT conditions of RLT- 
LP. To complete the proof, using (13.1) and (13.2), we show the equivalence of the 
optimal objective function values as follows. 

v[RLT-L1 y] = - c B - l p  + p t B - t Q B - ' p  

- Z u~[(g~ + G,B- 'p)(gj  + GjB-Ip)] 
(i,j)cMR 

E * : -- uijgig j 
(~,j)CMR 

+ I - c -  Z u~(9~Gj+gjG~) B -~p 

[ -  

I (i,j)CMR 

u i j ( G i G  j + +p ~B-~ Q - ~  Z * ~ a}a~) B-~p 
(i,j)cMR 

�9 = v[RLT-LP]. = _ uijgig j 
(i,j)CMR 

This completes the proof. 

5. Enhancements of the RLT Relaxation: RLT-NLP 

We now propose two enhancements for the foregoing RLT relaxation. First, we 
employ an eigen-transformation on QP to generate an equivalent problem for 
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which the first-level RLT representation can be constructed. However, the separable 
structure of the revised objective function now enables us to identify the RLT 
constraints that play an important role in providing a tight representation and the 
ones that do not. Translating this information for RLT-LP, permits us to reduce 
the size of the latter problem, without compromising on its tightness. Second, 
motivated by the same constructs, we include certain separable convex quadratic 
constraints within RLT-LP to derive a revised relaxation RLT-NLP. The structure 
of these constraints is such that they pose no additional burden in the context of 
a Lagrangian Relaxation optimization scheme, while they contribute additional 
strength to the resulting relaxation. Each of these enhancements is presented in 
separate subsections below. 

5.1. EIGEN-TRANSFORMATION (RLT-NLPE) AND IDENTIFICATION OF SELECTED 
CONSTRAINTS (SC) 

Let us begin by using a particular linear transformation based on the eigenstructure 
of the quadratic objective function. Let Q = P D P  t, where D is a diagonal matrix 
whose diagonal elements correspond to the eigenvalues Ai of Q, i = 1 , . . . ,  n, and 
P is a matrix whose columns correspond to orthonormal eigenvectors of Q (see 
Golub and Van Loan (1989), for example). Define x = Pz,  so that z = p tx .  The 
resulting eigen-transformed quadratic program is then obtained as follows: 

Minimize{cPz + z t D z  : A P z  <. b, l <<. P z  <. u}. (16) 
z C R  '~ 

We next construct the first-level RLT for this quadratic problem (16) as before, 
defined in terms of z and the RLT-variables Ykl, 1 ~< k ~< 1 ~< n, but now, we 
further tighten the relaxation by including the nonlinear constraints z 2 ~< Ykk = 
[z2]g, Vk = 1 , . . . ,  n, in this model. Let us refer to the resulting problem as 
RLT-NLPE. 

Let us now attempt to reduce the size of the problem RLT-NLPE by elimi- 
nating those constraints that might not contribute significantly to determining an 
optimal solution. Toward this end, denote the index set of "concave" variables 
by Nv = {k : Ak < 0, k = 1 , . . . , n} .  Renaming the constraints in (16) collec- 
tively as Fiz ~< fi, i = 1 , . . . ,  re + 2n, let us re-organize each second-order RLT 
constraint [(f~ - F~z)(fj  - Fjz)]e >1 0 from RLT-NLPE as 2keNv --FiAFjkykk <~ 
[the rest of the constraint]. On the left-hand side of the re-organized RLT con- 
straint, if the positive coefficients have at least as much weight as the negative 
coefficients, then it is more likely that this constraint produces relatively strong 
upper bounds on the yAA-variables that have positive coefficients, i.e., for which 
-F~AFjA > O, k ~ N~,. This is useful since the objective coefficients AA of 
these YAA variables are negative. Therefore, assuming that the original problem 
has been scaled so that all variables are roughly commensurate with each oth- 
er, we suggest generating only those RLT constraints that satisfy the condition 
(~ACN~ -FiAFjA) ) O, and suppressing the rest of them. The corresponding RLT 
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constraints in the previous representation RLT-LP are accordingly retained, while 
the remaining are discarded. Observe that we can no longer guarantee that the 
original constraints are implied by the selected RLT constraints, and so, we include 
the original constraints Gx <<. g in the reduced RLT-LP problem. Let us call this 
reduced relaxation having only selected constraints as RLT-LP(SC). 

5.2. REFORMULATION-CONVEXIFICATION APPROACH: INCLUSION OF SUITABLE 
NONLINEAR CONSTRAINTS IN RLT-LP TO DERIVE RLT-NLP 

Observe that in RLT-LP, the following linear RLT constraints 

[(~k - tk)2]e ~> o, [(~k - ~k)2]~ ~> o, 
[(xk - Ik)(uk--  xk)]e >1 0, k = 1 , . . . , n  (17) 

approximate the relationship wkk = xZk over the interval Ik ~< xk <~ uk, for 
k = 1 , . . . ,  n. Motivated by RLT-NLPE, we propose to replace (17) by the nonlinear 
constraints 

x~ <<. w ~  <~ (uk + Ik)xk - u k l k ,  Ik <<. xk <~ uk, k = 1 , . . . ,  n (18) 

and call the resulting nonlinear problem as RLT-NLP, and its corresponding 
reduced version as derived in Section 5.1 as RLT-NLP(SC). Notice that the upper 
bounding linear function in (18) is precisely the last constraint in (17). The improve- 
ment via (18), which implies (17), appears in the case when the problem RLT-LP 
tries to reduce the value of wkk for some k E { 1 , . . . ,  n} in the relaxed solution. 
Note that first two constraints in (17) merely approximate the function wkk = x~ 
from below via tangential supports at the points l~ and uk. On the other hand, since 
(18) produces the exact lower envelope, it is equivalent to having an additional 
tangential support at the optimal point included within RLT-LP. Therefore, the 
enhancement (18) corresponds to a tighter bounding nonlinear problem than the 
linear program RLT-LP. 

REMARK 2. Note that RLT-NLP and RLT-NLPE are no longer equivalent relax- 
ations. Although RLT-NLPE usually turns out to yield a tighter representation 
because the additional nonlinear constraints provide a better support for the "con- 
vex" variables (those associated with )~k > 0), the loss in structure due to the 
increased density in the bounding constraints inhibits the development of an effi- 
cient solution scheme. Hence, we implemented RLT-NLP. (See Section 7 for some 
related computational results.) 

REMARK 3. To further strengthen the bounding problem, we can derive two addi- 
tional classes of linear constraints based on projecting cubic bound-factor products 
onto the quadratic space, and on squaring differences of bound (or constraint) fac- 
tors. However, although these constraints serve to tighten the relaxation somewhat, 
they increase the problem size considerably. Hence, due to the ensuing computa- 
tional burden, they will not be used in the overall branch-and-bound algorithm. 
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(We refer the interested reader to Tuncbilek (1994) for the generation of such 
constraints; also, see Section 7 for some related computational results.) 

6. A Lagrangian Dual Approach for Solving RLT Relaxations 

Given a problem QP that has n variables and (up to) m + 2n constraints, the 
corresponding (non-reduced) first-level RLT problems has n(n  + 1)/2 additional 
variables, and a total of (m + 2n)(m + 2n + 1)/2 constraints. It is clear that the 
size of RLT-LP, or even RLT-NLP, gets quite large as the size of QP increases. If we 
can obtain a tight lower bound on RLT-NLP relatively easy, then we can trade-off 
between the quality of the bound and the effort necessary to obtain it. For this 
purpose, we propose to use a Lagrangian relaxation of RLT-NLP (see Fisher, 1981, 
for example), and solve - not necessarily exactly - the Lagrangian Dual Problem 
LD-RLT-NLP. 

To define the proposed Lagrangian dual for RLT-NLP, we dualize all but the 
constraints [(xk - lk)(Xl -- h)]e /> 0, [(ujc -- xk)(x l  --/1)]~ /> 0, [(uk -- xk)(ul  -- 
xL)]t /> 0 and [ (xk - - lk ) (u l - -x~ ) ] e  ) O, V1 ~< k < l ~< n, from the set 
(4.2), and the constraints (18) which have replaced (17). These constraints, along 
with the bounds lk ~< xk ~< uk, k = 1 , . . . ,  n, on the x-variables, comprise the 
Lagrangian subproblem constraints (see Fisher, 1981). Note that the foregoing 
linearized bound-factor product constraints in the subproblem yield lower and 
upper bounding linear functions for the linearized cross product terms wkl, for all 
1 ~< k < 1 ~< n. These constraints can be expressed in open form as follows: 

llxk + Ikxl -- lkll <~ wkl <~ l lXk  -4- UkXl  -- Ukll  V1 ~< k < I ~< n (19.1) 

u l x k + u k x l - - u k u l < . W k Z < U L X k + I k x l - - l k u z  V1 ~ < k < l ~ < n .  (19.2) 

In addition, following the layering strategy proposed by Guignard and Kirn(1987), 
in order to facilitate the solution of the Lagrangian subproblems, we replace wkl 
byw~z V1 ~< k < l ~< n in (19.2), and we include in RLT-NLP the constraints 

w~kl=wkt V1 ~<k < l ~ < n .  (20) 

These new constraints (20) are also dualized using some defined Lagrange multi- 
pliers. Hence, in order to solve the Lagrangian subproblem, depending on the signs 
of the coefficients for each wkl and w~l variable in the Lagrangian subproblem 
objective function, we first replace this variable in the objective function appro- 
priately by either its lower or upper bounding function in terms of x as defined 
in (19). The resulting subproblem objective function is then given in terms of the 
variables (xk, and wkk, for k = 1 , . . . ,  n) alone, and the subproblem constraints 
are now defined by (18) and the bounds on the x-variables. This reduced separable 
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Lagrangian dual subproblem can be stated as follows: 
?'b 

Minimize{fikxk + ~kkwkk : 
k = l  

x 2 <<, wk~ <<. (uk + l k ) x ~  - u~lk, l~ <<. xk <<. uk}. (21) 

Suppose that instead of the constraints in (21), we use the restrictions 

W k k  -~- X 2 ~,Ik <~ xk <~ uk, k = 1 , . . . , n  (22) 

to obtain the reduced Lagrangian dual subproblem in the following more favorable 
form: 

Minimize ~kxk + Okkwkk " (22) 
k = l  

n 

= ~ Minimize {ekxk + 0k~x2}. (23) 
k = l  lk<~xk<~uk 

The following proposition asserts that the simpler problem (23) equivalently solves 
(21). 

PROPOSITION 5. Problem (21) is equivalently solved via Problem (23). 
Proof. For any k E {1 , . . . ,  n}, if qkk > 0, then in (21), w~k can be replaced 

by x { in the objective function, which makes it equivalent to (23). If Okk ~< 0, 
then in (21), if w~k is replaced by (uk + Ik)xk -- uklk, the revised objective func- 
tion becomes a linear function of the variable xk. Consequently, an optimal value 
for xk occurs at either of its bounds, and so, the constraints on wk~ in (21) are 
satisfied as equalities at optimality. Examining the same case for (23), we sim- 
ilarly obtain a concave univariate quadratic minimization problem over simple 
bounds, and so, an optimal value for xk occurs at either of the bounds. Also, since 
(u~ + Ik)x~ -- u~Ik = x~ at either bound, both (23) and (21) produce the same 
optimal solutions. This completes the proof. �9 

REMARK 4. The Lagrangian dual problem is a nondifferentiable optimization 
problem. To solve this problem, we adopted the subgradient deflection algorithm of 
Sherali and Ulular (1989), using their recommended parameter values. After run- 
ning this algorithm for up to 200 iterations, another 50 iterations were performed in 
a reduced subspace by fixing the dual variables having relatively small magnitudes 
(less than half of the average magnitude of all the dual values) at their current 
level in the given incumbent solution, and polishing the remaining dual variable 
values. Finally, a dual ascent was performed by finding optimal values for the 
dual variables associated with the constraints (20) one at a time, in a Ganss-Seidel 
fashion, given the remaining dual variable values. This can be executed with little 
additional effort, and so, it provides a quick dual ascent step (see Tuncbilek, 1994, 
for details). 
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7. A Preliminary Computational Comparison of the Bounding Problems 

To evaluate and compare the different approaches for generating and solving a 
first-level RLT relaxation, we performed some preliminary empirical experiments 
using test problems from the literature. Using three bilinear programming prob- 
lems (BLP1, BLP2, BLP3) from A1-Khayyal and Falk (1983), and two concave 
programming problems (CQP1, CQP2) from Floudas and Pardalos (1990), we 
solved the first-level linear RLT problem RLT-LP, the nonlinear RLT problem 
RLT-NLP, the eigen space first-level nonlinear RLT problem RLT-NLPE, and the 
reduced RLT-NLP that uses only selected constraints (denoted RLT-NLP(SC)), as 
well as the Lagrangian dual problems corresponding to the latter three (denoted by 
the prefix LD-). For these computations, the linear and nonlinear programs were 
solved using GAMS along with the solver MINOS 5.2, and a Fortran code was 
written for solving the Lagrangian dual problems as per Remark 4. All the runs 
were conducted on an IBM 3090 mainframe computer. Table I reports the resulting 
lower bounds obtained along with the solution times required to generate these 
bounds. 

RLT-LP yields lower bounds very close to the actual global minimum for all the 
problems except for BLP1 (BLP2 and BLP3 are solved exactly). RLT-NLPE, where 
we have included the nonlinear constraints zk 2 ~< Ykk only for k E { 1 , . . . ,  n} such 
that Ak /> 0, solves all problems to (near) optimality. However, the computational 
effort is considerably increased since this lower bounding problem is a nonlinear 
programming problem. When we include the nonlinear constraints z 2 ~< Ykk for 
all k E {1 , . . . ,  n} in RLT-NLPE, the imposed resource limit of 1000 cpu seconds 
for GAMS is exceeded for BLP2. On the other hand, we were able to solve RLT- 
NLP, even while including all n nonlinear constraints, and it produced solutions 
comparable to those obtained by RLT-NLPE. Reconsidering RLT-LP, but this time, 
including the additional two classes of constraints mentioned in Remark 3 of 
Section 5, improves the lower bound for BLP1 to -1.125, and that for CQP2 to 
-39.47, the latter of which is greater than any of the bounds reported in Table I. 
However, the computational effort for CQP2 increased to 13.36 cpu seconds. 

Although the Lagrangian dual problem LD-RLT-NLP should give the same 
lower bound as does RLT-NLP, the bounds for BLP3 and CQP2 are somewhat 
worsened due to the inherent difficulty in solving nondifferentiable optimization 
problems. Nevertheless, the attractive computational times, especially when the 
problem size increases, makes this method our first choice to be used in the proposed 
branch-and-bound algorithm. 

In adopting the Lagrangian dual approach of Section 6 for RLT-NLPE, the 
2 n ( n  - 1) RLT constraints that are generated using the constraints l <~ P z  <~ u 

were dualized. Implied simple bounds on z-variables were computed by minimizing 
and then maximizing each row of z = P t x  over l ~< x ~< u to obtain counterparts 
of both the constraints (19) and the subproblem (23) in z-space. Ideally, we would 
like to use LD-RLT-NLPE as the bounding problem for the overall algorithm. 



18 

TABLE I. Comparison of RLT schemes 
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Problem m n Known v [RLT-LP] cpu secs. 
v[QP] 

BLP1 2 2 - 1.083 - 1.50 0.042 
BLP2 10 10 -45.38 -45.38 3.75 
BLP3 13 10 -794.86 -794.86 22.74 
CQP1 11 10 -267.95 -268.02 9.72 
CQP2 5 10 -39.00 -39.83 3.23 

Problem v[RLT-NLPE] cpu secs. v[LD-RLT-NLPE] cpu secs. 

BLP 1 - 1.083 0.086 - 1.097 0.09 
BLP 2 -45.38 31.23 -69.17 0.81 
BLP 3 -794.76 4 8 . 5 5  -11586.88 0.97 
CQP1 - 268.02 12.16 - 269.87 0.85 
CQP2 - 39.83 4.69 -43.38 0.65 

Problem v[RLT-NLP] cpu secs. v[LD-RLT-NLP] cpu secs. 

BLP 1 - 1.089 0.105 - 1.089 0.02 
BLP 2 -45.38 9.79 -46.10 0.43 
BLP 3 -794.86 78.41 -829.52 0.57 
CQP1 -268.02 13.30 -269.83 0.48 
CQP2 -39.83 4.69 -43.93 0.25 

v[LD-RLT- 
used Problem v[RLT-NLP(SC)] cpu secs. ~ constr.  NLP(SC)] 

BLP1 - 1.089 0.091 15/21 - 1.089 
BLP2 -45.38 6.07 339/465 -45.62 
BLP3 -806.53 32.84 387/564 -841.60 
CQP1 -268.02 13.61 352/497 -269.68 
CQP2 - 40.10 2.54 261/320 - 42.99 

Legend: (m, n) = size of the problem QP, v[.] = optimal solution of problem (.), 
cpu secs.=cpu seconds to solve the problem on an IBM 3090 computer. 

However, due to its dense structure, LD-RLT-NLPE tends to perform poorly as for 
problems BLP2 and BLP3, although the bounds for CQP1 and CQP2 are slightly 
improved over those obtained via LD-RLT-NLP. Upon using the tightest simple 
bounds on the z-variables that contain the feasible region, the lower bound for 

BLP3 improved considerably to -1507 .64 ,  but it is still 81% lower than that 

obtained via LD-RLT-NLP. 
Applying the constraint selection strategy of Section 5.1 on RLT-NLP we solved 

the reduced problem RLT-NLP(SC) with reduced computational effort, although 

at an expense of  a 1.5% decrease in the lower bound for BLP3. (Roughly 18-30% 
of the constraints are deleted by this strategy.) For the same problem, v[LD-RLT- 
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NLP(SC)] has also worsened by 1.5% compared to v[LD-RLT-NLP]. However, for 
the rest of the problems, LD-RLT-NLP(SC) actually improved the lower bounds. 
We have also observed that there is only a negligible increase in the required 
computational effort compared to that consumed by LD-RLT-NLP. Section 10 
reports on computational experiments using RLT-NLP, LD-RLT-NLP, and LD- 
RLT-NLP(SC) within the proposed branch-and-bound algorithm. 

8. Additional Features of the Proposed Algorithm 

8.1. SCALING 

Our experiments with the conjugate subgradient deflection algorithm have indicat- 
ed that scaling plays an important role in the performance of this algorithm. Among 
several scaling methods we tried, including a sophisticated iterative method used 
in the package MINOS (see Murtagh and Saunders, 1987), a simple one seemed to 
work well. This method scales the variables such that the lower and upper bounds 
are mapped onto the hypersquare [0, 1] ~. In addition, a row scaling is employed that 
divides each constraint aizc <~ b~, i E { l , . . . ,  m}, by the g~-norm of (ai, b~). 

8.2. BRANCH-AND-BOUND SEARCH STRATEGY 

The branch-and-bound search strategy employed uses a hybrid of the depth-first 
search and the best-first search strategies as suggested by Sherali and Myers 
(1985/6), where at most a fixed (MAXACT) number of nodes are kept active in 
the branch-and-bound tree. We used the largest value of M A X A C T  as permissible 
by storage limitations, depending on the size of the problem. In this approach, 
branching is performed by splitting the bounding interval of a variable as stated in 
Section 8.5. 

8.3. OPTIMALITY CRITERION 

To avoid undue excessive computations involved in sifting through alternative 
optimal solutions or close to global optimal solutions, we adopt the fathoming 
criterion 

LB/> UB - clUB[ (24) 

where 0 < ~ < l, and where LB is a valid lower bound at the current branch-and- 
bound node, and LIB is the current best (incumbent) solution value for QP. Hence, 
when the algorithm stops, we can claim that the global minimum is within 1006% 
of the current best solution. 

8.4. RANGE REDUCTIONS 

The tightness of the lower and upper bounds that define the box constraints on 
the variables play a major role in the performance of the Lagrangian dual bound- 
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ing scheme. Fast and effective procedures to improve simple bounds, known as 
"logical tests", have acquired a good reputation in (mixed) integer 0-1 program- 
ming. In addition to showing that these types of tests have their counterparts in 
global optimization, Hansen, Jaumard and Lu (1991) have also developed new 
tests using analytical and numerical methods. In the same spirit, we also propose 
some suitable strategies for improving lower and upper bounds on the variables at 
each node of the branch-and-bound tree. The first procedure is based on knapsack 
problems defined by individual linear functional constraints along with the box 
constraints. The second procedure is motivated by the number of constraints that 
have to be binding at optimality. The third and the fourth procedures are applied to 
cutting planes based on, respectively, the Lagrangian dual objective function, and 
the eigen-transformed separable objective function. The latter three strategies are 
based on some appropriate optimality conditions, by which we can further tighten 
the box constraints beyond feasibility considerations, by discarding regions that 
cannot contain an optimal solution. Since the bounds are tightened based on opti- 
mality related considerations, they are possibly not implied by the already existing 
constraints, and in the light of Proposition 2, this helps to generate tighter RLT 
bounding problems as well. Below, we summarize these range reduction strategies; 
for further details, see Tuncbilek (1994). 

8.4.1. Range Reduction Strategy 1 

This is a strategy for tightening variable bounds by virtue of a simple feasibility 
check. By minimizing the left-hand side expressions of the less than or equal to 
type functional constraints of QP in turn over the box constraints, we can obtain a 
maximum slack for each constraint. The procedure then discards that portion of the 
interval for each variable for which the maximum slack of some constraint would 
become negative. 

8.4.2. Range Reduction Strategy 2 

Denoting the number of nonpositive eigenvalues of the matrix Q by q, this proce- 
dure is based on the result that at optimality, at least q out of the m + 2n constraints 
can be required to hold as equalities (see Phillips and Rosen, 1990, and Mueller, 
1970). The proposed strategy computes a measure of redundancy for each func- 
tional constraint with respect to the box constraints by maximizing the left-hand 
side of the less than or equal to type functional constraints. If the number of nonre- 
dundant constraints thus detected, plus the number of x-variables that have an 
original lower or upper bound restricting its interval at the current node, is less 
than q, then we can fathom the current node. If this condition does not hold, then 
we can attempt to improve the bounds on the variables by using the same concept 
over the feasible range of each variable in turn. For any given variable, we can 
readily identify in closed-form the range of its interval for which the foregoing 
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criterion would hold, if at all. This range is then discarded unless the remaining 
interval becomes disjoint, and the procedure continues with another variable in a 
cyclic fashion until no further restrictions are effected in a complete cycle. 

8.4.3. Range Reduction Strategy 3 

For each node, given the current bound restrictions on the z-variables, consider the 
Lagrangian dual subproblem (23) corresponding to the incumbent dual solution 
of the parent subproblem. Since this gives a valid lower bounding problem, we 
examine each variable in turn and identify a subinterval of its range for which, if the 
variable was so restricted, the resulting Lagrangian based bound would fathom the 
node. Any such range identified for a variable is discarded, unless the remaining 
interval becomes disjoint. In a similar fashion, after having solved the current 
node's problem via the Lagrangian dual, we perform this range reduction before 
making any branching decision. This restriction also serves as an input for the 
immediate descendent nodes, for which this strategy will be applied after imposing 
a branching decision. 

8.4.4. Range Reduction Strategy 4 

This procedure is performed on the eigen-transformed problem (16). We first derive 
lower and upper bounds on the z-variables, say [L, U], by minimizing and then 
maximizing for each i = 1 , . . . ,  n, the definition function zi = (p/t)z,  where (p/t), 
is the ith row of  pt, over the box constraints on the z-variables corresponding to 
the current node restrictions. Let z ~ minimize the separable eigen-transformed 
objective function over L ~< z ~< U. Then, considering one z-variable at a time, 
while fixing the others at their values in z ~ we determine a subinterval to be 
eliminated for that z-variable by finding the range for which the objective function 
value would exceed the incumbent solution value. We eliminate such a subinterval, 
unless the remaining interval becomes disjoint, and continue this procedure in a 
cyclic fashion until there is no further reduction in the bounding intervals for the 
z-variables. Let [L new, U new] be the final bounds thus obtained. Then, by including 
the constraints L new ~< zi = (P~o)Z <~ U new for those z~, i = 1 , . . . ,  n, for which 
an interval reduction has resulted, we perform Range Reduction Strategy 1 again 
to possibly further restrict the z-variable bounds. 

8.5. BRANCHING VARIABLE SELECTION 

We describe below a branching rule that attempts to resolve the discrepancy 
between the values of the RLT variables and the corresponding nonlinear terms 
they represent. If there is no such discrepancy, that is, if (3) holds at an optimal 
solution to the bounding problem, then this solution is also optimal to QR In partic- 
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ular, to identify the RLT variables that contribute toward reducing the lower bound 
below the true QP objective value, let us compute the quantity 

dl = minimum {min {0, [ qkl, 
l<~k<~l<.n 2qkl, if k < l (~:t - x~xl . (25) 

The next proposition provides a sufficient condition under which the x-variable 
part of the solution to the RLT bounding problem optimality solves QE 

PROPOSITION 6. Suppose that (~, ~)  solves the RLT bounding problem of  QP, 
with the corresponding objective value being -~. Let dl be computed as in (25). I f  
dl = 0 then ~ solves QP with the corresponding objective value being 3. 

Proof. By Proposition 2, the constraints of QP are implied in the RLT prob- 
lem. (Alternatively, if a reduced RLT is being employed, then these constraints 
are directly present in the RLT problem.) Therefore, g is feasible to QP, and its 
objective function value cg + gtQ-g gives an upper bound on the actual optimum 
v[QP]. Due to the inner minimization operation in (25), dl = 0 implies that 
qkk~kk >- qkk "Z2 Vk = 1 , . . . , n l  and q k t ~  >. qktx~xl V1 ~< k < l ~< n. 
Hence, -2 ) c2 + -~tQ-~. But since g is feasible to QR and -2 is a lower bound on 
QR we have, c-~ + -~tQ-~ ) v[QP] >/-2 ) c-~ q- ztQN, which implies that equality 
holds throughout. Hence, ~, of objective value -2, solves QP, and this completes the 
proof. [] 

Now suppose that dl given by some indices (k_,/) in (25) is negative. (If there 
are ties in (25), we break it in favor of the maximum discrepancy xkxi - Nkt, 
with further ties broken arbitrarily.) In order to choose between xk and xl for a 
branching variable, using the same motivation as in (25), we compute for t = k_ 
and/_, 

d2(t) 
t - I  n 

j = l  j = t + l  

+ min{0, qtt (Nu - 72) }. (26) 

The branching variable index is then selected as follows: 

br = argmin(d2(t) " t = k__,l_}. (27) 

REMARK 5. The foregoing branching scheme is based on an optimal solution 
(5, ~ )  to the RLT bounding problem. However, note that since we are solving the 
Lagrangian dual of the enhanced first-level RLT problem, we do not directly obtain 
the optimal primal (x, w) variable values. Based on Theorem 1 of Sherali and 
Tuncbilek (1992), we could solve a linear program obtained by surrogating all the 
constraints of RLT-LP using the optimal dual solution obtained via LD-RLT-NLP, 
except for the bound factor product constraints and the original constraints of QP, 
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and guarantee convergence of the algorithm. However, this linear program itself 
might be a computational bottleneck. Hence, for theoretical purposes, one could 
resort to solving the latter linear program only finitely often along any branch of 
the branch-and-bound tree, but for the most part, resort to the following branching 
scheme that is motivated by the above theory. 

Step 1. Consider the Lagrangian subproblem associated with the dual incumbent 
solution to LD-RLT-NLP at the stage (23), where [1, u] are the x-variable bounds 
associated with the current node. Letting f~ (xk) = fikxk +Okkx 2, select a branching 
variable index as follows: 

br = argmax [min{lfk(uk) -- fk(~k)l, lYe(/k) - fk(~k)l}] (28) 
k~{1,..,~} 

31k <'~k < uk 

where ~ solves (23), breaking ties in favor of the variable that has the largest feasible 
interval at the current node. If all variables are at their bounds in ~, proceed to Step 
2. 

Step 2. Using the incumbent dual solution to LD-RLT-NLP as the starting solu- 
tion, continue the conjugate subgradient procedure for 50 more iterations omitting 
the resetting strategy, and accumulate (~, ~ )  as the average of the Lagrangian 
subproblem solutions. (In theory, Larsson and Liu (1989) show that this should 
ultimately converge to the optimal primal solution to RLT-NLP under a very 
restricted step-size strategy. To aid this process, we also attempt to project ~, if 
infeasible, onto the feasible region of QP by taking a single step toward this region 
along a direction defined by the violated constraints.) Select a branching variable 
using (25)-(27) provided that dl < 0 in (25), and otherwise, if dl = 0, then proceed 
to Step 3. 

Step 3. Select the x-variable that has the largest feasible interval in the current 
node problem as the branching variable. That is, let 

br = argmax {(uk - Ik)} (29) 
kc{1,...,~) 

and exit this procedure. 
Partitioning Phase. If the branching variable xb~ is selected using Step 1 or Step 

2 of the above procedure, then split its current interval at the value gb~, creating 
the partitions [lb~, gb~] and [gb~, ub~], provided that the length of each resulting 
partition is at least 5% of the length of the current interval [Ib~, Ub~]. Otherwise, 
partition the current interval of xb~ by simply bisecting it. 

8.6. FINDING GOOD QUALITY FEASIBLE SOLUTIONS 

In the branch-and-bound algorithm, besides a tight lower bound, we should also 
actively seek good quality solutions early in the algorithm. Although RLT-(N)-LP 
yields a feasible solution by construction, this may not be true for the case of 
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LD-RLT-NLR Therefore, we developed and tested the following three heuristic 
procedures, and composed them in the manner described below. 

In the first procedure, we formulate aft/1-norm penalty function for the problem 
QP that incorporates absolute violations in the functional constraints into the penal- 
ty term, and then approximately minimize this penalty function using the conjugate 
subgradient algorithm described in Remark 4. As the starting solution, we used the 
average of the x-variable part of the subproblem solutions obtained at improving 
iterations of the conjugate subgradient algorithm while solving the Lagrangian dual 
problem at the current branch-and-bound node. During this procedure, we attempt 
to project promising near feasible points onto the original feasible region of QP 
by taking a single step toward this region along a direction defined by the violated 
constraints. We consider a feasibility tolerance of 10 .6 in Euclidean distance to 
be compatible with the default setting for MINOS (see Murtagh and Saunders, 
1987). 

In the second procedure, we simply apply MINOS to the original problem 
QR using the resulting point of the foregoing penalty approach as the starting 
solution. 

In the third procedure, at each node, having solved the Lagrangian dual problem, 
we formulate (21) corresponding to the incumbent dual solution, but now, we also 
include the functional constraints of QP in this subproblem. The resulting convex 
program is then solved using MINOS. Notice that this procedure also happens to 
be a dual ascent step for the Lagrangian dual problem. 

In the overall branch-and-bound algorithm, we implemented the following 
heuristic scheme. For the first 10 nodes of the branch-and-bound tree, we employed 
the second procedure, using the solution of the first procedure as a starting solution. 
At all subsequent nodes, we employed the first and the third procedures, except 
that whenever the incumbent solution improved, we executed the second procedure 
using this new incumbent point as the starting solution, to possibly further improve 
this incumbent solution. 

9. Summary of the Algorithm 

Step O. Initialization. Apply the heuristic procedure of Section 8.6 using x ~ = P z  ~ 
as the starting solution, where z ~ is defined in Section 8.4.4, to obtain an initial 
incumbent solution. Initialize the branch-and-bound tree as node 0, and let the 
present set of bounds on the x-variables be as given in Problem QP. Flag node 0 
and proceed to Step 1. 

Step 1. Range Reductions. Designate the most recently flagged node as the 
current active node. For the given set of bounds, apply the Range Reduction 
Strategies 1-4. If this indicates a fathoming of the current node, then go to Step 3. 
Otherwise, proceed to Step 2. 

Step 2. Bounding and Branching Step. Scale the node subproblem using the 
scheme of Section 8.1, and solve the problem LD-RLT-NLP to obtain a lower 
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bound on the node subproblem. (If LD-RLT-NLP(SC) is used, then prior to the 
constraint selection process, scale the problem (16) as described in Section 8.1 using 
the bounds [L new, U new] on z-variables, which are readily available as a byproduct 
of the Range Reduction Strategy 4.) During the process of solving the Lagrangian 
dual problem, whenever the incumbent dual solution improves during the conju- 
gate subgradient optimization iterations, check if the fathoming condition (24) is 
satisfied, and proceed to Step 3 if this is the case. Apply the heuristic procedure of 
Section 8.6, to possibly improve the incumbent solution. Again, if the fathoming 
rule (24) holds, then proceed to Step 3. Otherwise, apply the Range Reduction Strat- 
egy 3 using the current incumbent dual solution, and select a branching variable 
according to the branching rule of Section 8.5. Accordingly, partition the current 
node subproblem by creating two nonactive descendent nodes corresponding to 
the resulting two sets of (revised) bounds on the branching variable :Cbr, and go to 
Step 4. 

Step 3. Fathoming Step. Fathom the current node. If the sibling of the fathomed 
node is not active (see Section 8.2) then flag that node. Otherwise, flag the nonactive 
sibling of the highest level node on the path from the current node to the root node, 
and return to Step 1. If there is no such node, then either stop if there exist no active 
end nodes, or else, proceed to Step 4. 

Step 4. Node Selection Step. If the incumbent solution has improved since the 
last time Step 4 has been visited, then fathom any active node that satisfies the 
criterion (24). If the number of active end nodes equals MAXACT, then select an 
active end node that has the least lower bound, and flag one of its descendent nodes. 
On the other hand, if the number of active end nodes is less than MAXACT, then 
along the branch of each such end node, find the lowest level node (closest to the 
root) that has at least one nonactive descendent node, and among these nodes, flag 
the nonactive descendent node of the one that has the least lower bound. Return to 
Step 1. 

The convergence of the above algorithm follows from Sherali and Tuncbilek 
(1992), where it is shown that for a more general procedure, any accumulation 
point of the sequence of solutions generated for the RLT relaxations along any 
infinite branch solves the Problem QP. Hence, finite convergence to an c-optimal 
solution can be obtained. 

10. Computational Results and Conclusions 

We now evaluate the proposed algorithm using a set of test problems chosen from 
the literature. In addition to the five problems used in Section 7, six larger sized 
(m = 10, n = 20) standard test problems from Floudas and Pardalos (1990), and 
seven randomly generated problems using the generation scheme of Phillips and 
Rosen (1990) and Visweswaran and Floudas (1993) of size upto (m = 20, n = 50) 
are solved. 
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TABLE II. Performance of the branch-and-bound algorithm using LD-RLT-NLP(SC) 

Known No. of B&B 
Problem (m, n) v[QP] v[B&B] cpu secs. nodes Node 0 LB 

BLP1 (2, 2) - 1.083 - 1.083 0.71 1 - 1.089 
BLP2 (10, 10) -45.38 -45.38 1.08 1 -45.81 
BLP3 (13, 10) -794.86 -794.86 3.02 5 -838.85 
CQP1 (11, 10) -267.95 -268.01 1.17 1 -270.69 
CQP2 (5, 10) -39.00 -39.00 1.72 5 -42.95 
CQP3 (10, 20) -394.75 -394.75 3.29 3 -423.32 
CQP4 (10, 20) -884.75 -884.75 2.61 1 -904.02 
CQP5 (10, 20) -8695.01 -8695.01 2.55 1 -9097.99 
CQP6 (10, 20) -754.75 -754.75 2.61 1 -787.60 
CQP7 (10, 20) -4105.28 -4150.41 15.94 11 -5126.68 

IQP1 (10, 20) 49318.0 49317.97 2.73 3 44937.40 

Legend: Problem=problem name, (m, n)=size of the problem QR v[QP]=known optimal (best) 
solution of problem QP, v[B&B]=branch-and-bound algorithm incumbent value, cpu secs.=cpu 
seconds to solve the problem on an IBM 3090 computer, No. of B&B nodes=number of branch- 
and-bound nodes generated, Node 0 LB=lower bound on QP at root node (optimality criterion is 
1% for the first 5 problems, and 5% for the rest of the problems). 

TABLE III. Performance of the branch-and-bound algorithm using LD-RLT-NLP 

Known No. of B&B 

Problem (m, n) v[QP] v[B&B] cpu secs. nodes Node 0 LB 

BLP1 (2, 2) -1.083 -1.083 0.71 1 -1.089 
BLP2 (10, 10) -45.38 -45.38 1.37 3 -46.02 

BLP3 (13, 10) -794.86 -794.86 2.66 5 -839.02 
CQP1 (11, 10) -267.95 -268.01 1.12 1 -270.68 
CQP2 (5, 10) -39.00 -39.00 1.61 5 -42.96 
CQP3 (10, 20) -394.75 -394.75 8.13 7 -439.03 
CQP4 (10, 20) -884.75 -884.75 2.54 1 -928.92 
CQP5 (10, 20) -8695.01 -8695.01 13.26 11 -9541.67 
CQP6 (10, 20) -754.75 -754.75 5.04 5 -803.31 
CQP7 (10, 20) -4105.28 -4150.41 27.00 25 -5262.57 
IQP1 (10, 20) 49318.0 49317.97 2.61 3 45776.43 

Legend: Problem=problem name, (m, n)=size of the problem QP, v[QP]=known optimal (best) 
solution of problem QP, v[B&B]=branch-and-bound algorithm incumbent value, cpu secs.=cpu 
seconds to solve the problem on an IBM 3090 computer, No. of B&B nodes=number of branch- 
and-bound nodes generated, Node 0 LB=lower bound on QP at root node (optimality criterion is 
1% for the first 5 problems, and 5% for the rest of the problems). 

Tables  II  and  I I I  p r e sen t  resul ts  on the  s t andard  test  p r o b l e m s  us ing  L D - R L T -  

N L P ( S C )  and  L D - R L T - N L P ,  respec t ive ly ,  as the l o w e r  b o u n d i n g  p r o b l e m .  T h e  

o p t i m a l i t y  t o l e r ance  (see  Sec t ion  8.3) is t aken  as 1% for  the first  f ive p r o b l e m s  and  

as 5 %  for  the  r e m a i n i n g  ones.  U s i n g  L D - R L T - N L P ( S C ) ,  al l  the  p r o b l e m s  are  s o l v e d  
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under 16 cpu seconds. Compared to Table III, although a more relaxed problem 
is being solved in Table II, we observe an improvement in several of the root 
node lower bounds, especially for larger sized problems. This is principally due 
to the reduction of the dual search space, which improves the performance of the 
conjugate subgradient algorithm, while not significantly sacrificing the tightness of 
the theoretical lower bound. In Table III, the run times have somewhat increased 
for the larger problems, where all the problems, except one, are solved under 14 cpu 
seconds. Problem CQP7 required by far the greatest effort, taking 27 cpu seconds to 
be solved. However, even when using an optimality criterion of 5%, a better solution 
than the best known one to CQP7 is found. (This previous best solution reported 
in Floudas and Pardalos (1990) has an objective value of -4105.2779.) Upon 
reducing the optimality criterion to 1% and then to 0.1%, CQP7 is solved in 64 cpu 
seconds and in 205 cpu seconds, respectively, and in both cases, the same solution 
of value -4150.4087 is obtained (non-zero variables are x3 = 1.0429, xll = 
1.746744, x13 = 0.4314709, X l6  = 4.43305, x18 = 15.85893, x20 = 16.4869). 
For both of these cases, 86% of the overall effort is spent in solving the Lagrangian 
dual problem, showing that this is the determining factor for the total computational 
effort required. Using the reduced problem LD-RLT-NLP(SC), when we set the 
optimality criterion to 1% for CQP7, the algorithm consumed 90 cpu seconds, 
while for an accuracy tolerance of 0.1%, the algorithm was prematurely terminated 
after enumerating the preset limit of 200 nodes in 290 cpu seconds. Therefore, 
if a higher degree of accuracy is required, we recommend using the non-reduced 
problem LD-RLT-NLP; where overall, the marginally tighter representation does 
play an important role. 

The heuristic procedure of Section 8.6 performed well by identifying the incum- 
bent solution at the root node for all the problems, except for Problem CQP2, for 
which the optimum was found at the second node. The range reduction strategies 
of Section 8.4 prove to be very fast and effective; for example, if these reductions 
are not performed for Problem CQP7, the number of branch-and-bound nodes 
enumerated increases to 45 from 25 (requiring 57 cpu seconds) in Table III. 

Although by Proposition 2, the tightness of the implied bounds on the vari- 
ables should not affect the result of the bounding problems, this seems to play 
an important role in the performance of the Lagrangian dual solution procedure. 
As originally stated, problems CQP3-CQP7 do not include upper bounds on the 
variables, and for the purpose of the branch-and-bound algorithm, we used the 
smallest hyperrectangle that contains the feasible region found by minimizing and 
maximizing each variable over the feasible region. As a comparison, upon using 
a looser upper bound of 40 on each variable, which is trivially implied by a gen- 
eralized upper bounding type of constraint present in these problems, CQP3 and 
CQP7 are solved in 35 and 43 cpu seconds, respectively, using LD-RLT-NLP(SC) 
as the bounding problem. 

Table IV presents results for the smaller sized problems using RLT-NLP as the 
bounding problem and solving this by using MINOS 5.1, in lieu of the Lagrangian 
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TABLE IV. Performance of the branch-and-bound algorithm using RLT-NLP 

Known No. of B&B 
Problem (m, n) v[QP] v[B&B] cpu secs. nodes Node 0 LB 

BLP1 (2, 2) -1.083 -1.083 1.15 1 -1.089 
BLP2 (10, 10) -45.38 -45.38 12.90 1 -45.38 
BLP3 (13, 10) -794.86 -794.86 63.60 1 -794.86 
CQP1 (11, 10) -267.95 -268.01 15.25 1 -268.01 
CQP2 (5, 10) -39.00 -39.00 16.68 3 -39.82 

Legend: Problem=problem name, (m, n)=size of the problem QR v[QP]=known optimal 
(best) solution of problem QP, v[B&B]=branch-and-bound algorithm incumbent value, 
cpu secs.=cpu seconds to solve the problem on an IBM 3090 computer, No. of B&B 
nodes=number of branch-and-bound nodes generated, Node 0 LB=lower bound on QP at 
root node (optimality criterion is 1% for the first 5 problems, and 5% for the rest of the 
problems). 

TABLE V. Performance of the branch-and-bound algorithm for randomly-generated problems 
using LD-RLT-NLP(SC) 

(m,n) 

cpu seconds No. of 
5% opti- Full B&B Node 0 relative gap 

v[B&B] Node 0 LB mality Node 0 nodes 100(UB-LB)/IUBI 

(20, 25) 365.91 365.64 1.71 6.06 1 0.076% 
(20, 25) 1 1 7 0 . 5 4  1169.98 1.52 5.88 1 0.048% 
(20, 40) -234.55 -234.95 3.58 12.91 1 0.172% 
(20, 40) - 1264.53 - 1264.93 2.30 12.44 1 0.031% 
(20, 50) -1311.48 -1326.01 3.84 17.21 1 1.109% 
(20, 50) -1259.01 -1319.69 12.77 18.50 1 4.82% 
(20, 50) -1215.62 -1241.04 4.98 18.08 1 2.091% 

dual approach used in Table III. We observe that although the computational time 
has increased for all problems, the first four problems are solved at the root node 
itself, while the fifth problem returns an initial lower bound of - 3 9 . 8 2  at the 
root node, the optimum value being -39 .00 .  Note that while there is some loss 
in the tightness of  the bounds due to the inaccuracy in solving RLT-NLP via the 
Lagrangian dual approach, the overall gain in efficiency is quite significant. Hence, 
there exists a great potential for further improvement if the lower bounding problem 
RLT-NLP could be solved more accurately by the Lagrangian dual scheme. 

Using the random problem generator kindly shared by Visweswaran and Floudas 
(1993) and Phillips and Rosen (1990), we solved several larger sized problems 
having upto 20 constraints and 50 variables using the bounding problem LD-RLT- 
NLP(SC),  and an optimality criterion of  5%. These problems are of  the form 
min{0~(0.5 ~ i ~  1Ai(xi -~i)2) . Az ~ b,x ) 0}, where 01 = -0 .0 0 1 ,  and the 
number of  positive and negative components of A are roughly equal. As report- 



A REFORMULATION-CONVEXIFICATION APPROACH 29 

ed in Table V, all the problems are solved at the root node with a reasonable 
computational effort. Note that for several of these problems, the 5% optimality 
tolerance was detected even before the node zero analysis was completed (see the 
cpu seconds columns). However, the results given in Table V correspond to a full 
node zero analysis. The final column in Table V shows that the proven accuracy 
of the solutions obtained at node zero is typically significantly better than 5%. All 
incumbent solutions obtained were subsequently verified to be at lest within 1% 
of optimality, except for the sixth problem, for which a better incumbent solution 
of value -1281.0 was obtained when we enumerated two more nodes. This shows 
that the actual accuracy of the node zero lower bound for this problem is at least 
3%. 

To summarize, in this paper, we have investigated Reformulation-Convexifi- 
cation based relaxations embedded within a branch-and-bound algorithm for solv- 
ing non-convex quadratic programming problems. Tight nonlinear programming 
relaxations have been defined, and a suitable Lagrangian dual procedure has been 
designed to solve the relaxations efficiently. The proposed algorithm has been fur- 
ther enhanced by incorporating fast and effective range reduction procedures. Test 
problems from the literature having upto 20 variables, and randomly generated 
problems having upto 50 variables have been solved with a reasonable computa- 
tional effort. 

For implementation, we recommend the use of LD-RLT-NLP when a better than 
5% accuracy is desired, and the use of the reduced relaxation LD-RLT-NLP(SC) 
otherwise. For specially structured QPs, especially in the light of Remark 1 and 
Proposition 2, we strongly suggest that specialized, reduced RLT relaxations be 
investigated. The eigen-space based relaxation LD-RLT-NLPE is also recommend- 
ed to be used whenever it can be conveniently constructed, and if there is a signif- 
icant gap observed between the lower bounds generated via RLT-NLP and RLT- 
NLPE. For large sized problems, we recommend that the heuristic of Section 8.6 be 
used, perhaps in concert with solving the RLT based relaxation LD-RLT-NLP(SC) 
at a limited number of nodes. 
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